Magister is proud to present our 15 ESRs. If you want to contact them, if they have contact information available, contact them directly. If not, contact the project manager, Bridgette Connell ( 

Click on the ESR to find out more about them and their research.

  • ESR 1: Ushnish Sengupta (UCAM)

    Academic Division: Information Engineering

    Research group: Computational and Biological Learning


    Personal website

    Research interests

    Broadly speaking, I am interested in high-stakes applications of probabilistic machine learning techniques. The consequences of failure for an ML algorithm that monitors the sensors of an aircraft engine are very different from one that recognizes faces in social media photos or recommends music. These critical applications often place a high premium on principled uncertainty estimates,  applicability to limited datasets and interpretability: something probabilistic machine learning techniques like Gaussian processes can offer. Marrying these completely data-driven techniques with physical modeling for more robust predictions and sensible extrapolations is also something that intrigues me.

    I am a Marie Sklodowska-Curie Early Stage Researcher in the MAGISTER consortium which seeks to utilize machine learning to understand and predict thermoacoustic oscillations in aircraft engines or gas turbines. My job, as I see it, is to serve as a liaison between the probabilistic machine learning group led by my PhD supervisor Professor Carl Rasmussen and the flow instability and adjoint optimization group led by my advisor Professor Matthew Juniper. We are currently looking at data from both small-scale and large-scale combustors to explore how ML techniques can use this data to enable both better designs and safe operation for these machines.

    I am also a dilettante computational chemist and am curious about how probabilistic machine learning can improve our ability to predict protein aggregation and protein dynamics. Protein aggregates, of course, play both functional and pathological roles in the human body while protein dynamics is crucial to the functioning of many enzymes. Compared to the static structure prediction problem, however, both aggregation and dynamics are harder to characterize experimentally and lack extensive databases. Can Bayesian techniques shine in this data-limited regime and achieve results comparable to expensive simulations which consume many thousand of supercomputer core-hours?


    I did my bachelor in Mechanical Engineering from the Indian Institute of Technology, Kharagpur and my masters in computational science from RWTH Aachen University, Germany. As a bachelor student, I worked on the computational modeling of compartment fires and microcombustors. In my masters thesis work, on the other hand, I analyzed data from molecular dynamics simulations and focused on the automatic generation of hidden Markov models to help computational scientists effortlessly derive a simple, concise "states and rates" picture from the massive amount of data they generate. My experiences shaped me into a person with great passion for both mechanical engineering and data science and I believe that the topic of my PhD represents a perfect fusion of these interests.

  • ESR 2: Nils Wilhelmsen (Armines)

    Introduction and contact info:


    Name: Nils Wilhelmsen

    Work address: Centre Automatique et Systèmes

                            MINES ParisTech

                            60 Boulevard Saint-Michel

                            75006 Paris




    Project partner: ARMINES(Association pour la recherche et le développement des méthodes et processus industriels)

    Project title: Supervised Learning Algorithms for Distributed Parameter Models of Thermoacoustic Oscillations

    Previous background:

    MSc Engineering Cybernetics from NTNU(Norwegian University of Science and Technology), June 2018

    Title of MSc Thesis: Minimum Time Bilateral Observer Design for 2X2 Systems of Linear Hyperbolic PDEs - With Application to Oil Well Drilling State Estimation for Improved Kick Handling


    Courses taken in relation to project:

    • Fundamentals of thermoacoustic instabilities, CERFACS, July 2018
    • Probabilistic Machine Learning, MAGISTER Workshop, September 2018
    • Thermoacoustics and Combustion Dynamics, MAGISTER Summer School, September 2018
    • Flatness Based Nonlinear Control, MINES ParisTech, March 2019
    • Numerical Methods for Large Eddy Simulations, CERFACS, April 2019
  • ESR 3: Nilam Tathawadekar (GE)

    My current research focuses on machine learning in the area of combustion instabilities. The basic idea is to improve sub-models of premixed combustor using deep learning techniques. Since September 2018, I am an Early Stage Researcher in General Electric (GE) Aviation Digital, Munich.

    I am alumni of Indian Institute of Science, Bangalore. Here is the link to my work on eRetail demand forecasting using deep neural networks.

    Contact :

    E-Mail :

    LinkedIn : Nilam Tathawadekar

  • ESR 4: Louise Da Costa Ramos (ANSYS)

    Louise da Costa Ramos 




    Project: Marie Curie Early Stage Researcher (ESR)

    Academic host: Mines Paristech 

    Industrial host: ANSYS

    Supervisors: Florent Di Meglio (Mines Paristech), Valéry Morgenthaler (ANSYS), Luís Fernando Silva (PUC-Rio).

    Topic: Development of a computational model using Deep Learning approach to enable combustion/acoustic coupling.

    Software used: Fluent, ANSYS Tools, Matlab.



    • MSC Mechanical Engineering from Pontíficia Universidade Católica do Rio de Janeiro (PUC-RIO).

    Project: Computational modeling of laminar non-premixed diffusion flames with detailed kinetic mechanism, by using OpenFOAM.

    Supervisor: Luís Fernando Figueira da Silva - PUC-Rio

  • ESR 5: Sagar Kulkarni (TUM)

    I am Sagar Kulkarni, a Marie Curie Early Stage Researcher at TU Munich. I am from India and have an M.Sc., in Mechanical Engineering from TU Delft, Netherlands. For my Master thesis, I carried out CFD analysis of a Micro Gas Turbine Flameless Oxidation spray burner for range extension application for electric vehicles at the Institute of Combustion Technology, DLR, Cologne and TU Delft.

    As an ESR my work packages include LES of spray combustion for low order modelling of the dynamics and Uncertainty Quantification. In detail, I will be carrying out LES of spray flame in presence of acoustics in AVBP to determine the Flame Transfer Function (FTF) of the system. Then use the System Identification procedure to quantify the uncertainty of the FTF with respect to simulation parameters such as length of the time series and number of droplet parcels modelled.

    As a result, I look at Flame Impulse Response (IR) and transfer function of the liquid fuel combustion, analyse the contribution of various physical processes (eg. atomization, evaporation) to the overall flame response in terms of frequency response functions.

    I look forward to the cooperation from other partners (academic and industrial) towards the project to really deliver the goals and make a step towards mitigating instabilities from aero engines!!

  • ESR 6: Varun Shastry (CERFACS)

    Current Research: 

     My goal as an ESR on the MAGISTER project is to understand the challenging problem of thermoacoustic instabilities in spray flames. The complex multidimensional problem is broken down to understand the impact of acoustic instabilities on spray formation and spray flames using simulations and by developing models. Finally, the goal is to build a framework and perform coupled LES of spray flames under unstable conditions to get a complete idea of the coupling mechanisms and their contributions.

    Host Institution : CERFACS, Toulouse, France

    Secondments : TU Munich, Germany and Safran Tech, Paris.

    Educational qualification and Background:

    M.Sc. in Simulation Sciences, RWTH Aachen, Germany (2017).

    B.Tech. in Mechanial Engineering, NITK Surathkal, India (2011).

    Curiosity and drive to understand things in detail have always drawn me towards research. My time in the Combustion and Sprays lab at Indian Institute of Sciences (2013-2014) as a student assistant was the first consistent long-term stint in a research setting which pushed me towards a PhD. My Master’s thesis on multicomponent spray evaporation along with the coursework provided a solid transition into the current PhD topic.

    Other info:

    Post work I take time to follow current affairs, exercise, keep fit and follow football. I like traveling, going to concerts and festivals to take a break from research. Being a big foodie, I cook things that remind me of home back in India.  

     Contact details:



  • ESR 7: Alireza Ghasemi (UT)

    My Story

    I completed my BSc in Mechanical engineering in University of Tehran with a focus on CFD and optimization. My involvement in a variety of engineering applications allowed me to focus on multiple projects such as writing a CFD solver and learning about genetic algorithms and neural networks. I tried to expand my horizons as a next step and started my MSc in energy engineering and sustainability in Polytechnic University of Milan. The opportunity of finding solutions to various renewable technology challenges further crystalized the necessity of thinking outside the box and dreaming big in order to tackle the problems of future. I wrote my MSc thesis as part of Engine Combustion Network looking into diesel spray atomization in light of climate change and stricter emission regulations. Focusing on numerical simulations and post processing of such temporally and spatially resolute phenomena was an invaluable experience. And finally, my search for a challenging problem with meaningful real life application and impact lead me to Magister.

    My Research

    My research is focused on LES of spray flames and thermoacoustic instabilities in aircraft engine combustors. The cross disciplinary nature of this problem runs the gamut of highly turbulent flows, multiphase flows, turbulent combustion and the emergent acoustic instability. We aim to employ machine learning methods in order to further our understanding of lean premixed combustion instabilities and pave the way towards greener, safer and more environmentally responsible aero engine designs.


  • ESR 8: Francesco Garita (UCAM)


    Telephone: +44 1223 746971


    Research interests

    Project type: Marie Curie Early Stage Researcher (ESR) funded by the European Commission
    Topic: Physics-Based Machine Learning in Thermoacoustics
    Description: Statistical learning techniques are applied to hundreds of thousand experimental data to infer quantitatively-accurate mathematical models able to predict in a reliable manner the onset of instabilities in a lab-scale thermoacoustic system representative of a rocket engine. The work involves (i) automating the lab rig to perform a vast amount of experimental data, (ii) implementing Bayesian algorithms, and (iii) elaborating and testing reduced order mathematical models.

    Peer-Reviewed Publications

    L. Marocco, F. Garita, Large Eddy Simulation of liquid metal turbulent mixed convection in a vertical concentric annulus. Journal of Heat Transfer, 140 (7), (2018).
    doi: 10.1115/1.4038858

    F. Garita, H. Yu, M. P. Juniper, Assimilation of Experimental Data to Create a Quantitatively-Accurate Reduced Order Thermoacoustic Model. Journal of Engineering for Gas Turbines and Power, (2020).


    Ph.D. in Engineering

    University of Cambridge, UK

         01/2018 - present

    Internship for M.Sc. Thesis

    Karlsruhe Institute of Technology, Germany

         09/2016 - 03/2017

    Exchange M.Sc. Student in Mechanical Engineering

    ETH Zurich, Switzerland

         09/2015 - 09/2016

    M.Sc. (summa cum laude) in Energy Engineering

    Politecnico di Milano, Italy

         10/2014 - 04/2017

    B.Sc. (summa cum laude) in Energy Engineering

    Politecnico di Milano, Italy

         09/2011 - 07/2014

  • ESR 9: Alireza Javareshkian (TUM)

    Starting from the middle of March, 

    Alireza Javareshkian 

    started his project at the institute. The aim of this project which is funded by EU project-MAGISTER (H2020-MSCA-ITN-2017), is further investigation of acoustic behavior of combustor liners with dilution holes in aero GT engines. Characterization and modelling of acoustically absorbing liners would be performed through the course of this project, aiming acoustic characterization of perforated medium, measurement of damping rates of a combustion system with and without perforated medium and benchmark of measured and predicted (1D-network, LNSE) results.

  • ESR 10: Edmond Shehadi (UT)


    After obtaining my B.E. in mechanical engineering at the Lebanese American University, Lebanon, I decided to proceed down the computational branch of science. Accordingly, I devoted the next couple of years of my career to earn my M.Sc. in computational science at Uppsala University, Sweden. There, I developed a great fascination towards computational fluid dynamics (CFD), especially turbulence with respect to large-eddy simulation (LES). Armed with the motivation, curiosity, and passion, this led me to become a PhD candidate at the University of Twente as part of a Marie Curie EU-funded project, MAGISTER.

    My graduate school thesis tackled canonical flow cases in CFD, such as turbulent channel flows and backward-facing steps, via the open-source software, OpenFOAM and using wall-resolved LES. My M.Sc. work titled “Large Eddy Simulation of Turbulent Flow over a Backward-Facing Step” can be found here, while my past, present and future research interests and progress may be located on ResearchGate (see below).

    Besides my professional career, some of my other hobbies include reading literature, playing and writing music and, for some weird reason, telling everyone that I know how to play tennis.

     Current Research

    In the meantime, my work is heavily computationally oriented. It involves working with the relatively new open-source CFD code SU2, particularly the high-order discontinuous Galerkin (dG) solver therein. My current work tackles open-source development of non-reflecting boundary conditions, mainly via the perfectly matched layer (PML) technique and using wall-modeled (WM-)LES.

    In the context of MAGISTER, my objective is to utilize the high-order dG solver of SU2, in conjunction with PML and WM-LES in order to better simulate (compressible) turbulent flow through combustor liners and dilution holes of jet engines – operating at transonic speed regimes. These, in turn, will further facilitate the understanding of the acoustics and turbulence mechanisms acting in such confined geometries by means of high-fidelity simulations. Concurrently, these will serve as additional training datasets for later machine learning purposes.


    LinkedIn:        Edmond K. Shehadi

    ResearchGate: Edmond K. Shehadi

  • ESR 11: Thomas Christou (KIT)

    Born and grew up in Athens, Greece 


    Studied Mechanical Engineering at the

    National Technical University of Athens (N.T.U.A.)

    5-year-Diploma (Dipl.-Ing.)

    Specialization (4th and 5th year) on Energy and Process Engineering

    Diploma thesis on optimization of different co-generation (electricity and cooling) configurations by utilizing a waste heat source

    Internship for 2 months at Daikin Greece S.A. in Athens, part of Daikin Europe N.V., a serious air conditioning company based in Ostend, Belgium

    Research start at the Karlsruhe Institute of Technology (K.I.T.)

    in Karlsruhe, Germany

    Department of Chemical and Process Engineering, Engler-Bunte-Institute (EBI), Chair of Combustion Technology

    PhD Candidate and Early Stage Researcher (ESR) for the Marie Skłodowska-Curie Actions (MSCA) project MAGISTER

    Research focus on atomization and sprays 

    Experimental approach on air blast atomization under oscillating flow field, in order to determine the acoustic influence of the air on the generated spray

    Build of atmospheric test rig from scratch, with atomization nozzles developed and manufactured at KIT and pulsation device from Technische Universität München (TUM).

    Main measurement technique:

    Phase Doppler Anemometry (PDA

  • ESR 12: Sara Navarro Arredondo (UT)

    Project title: Characterization of acoustically (un)forced kerosene spray flames at elevated pressure and preheated air

    Experimental investigation in liquid fuel combustion. An air blast type burner will be used in a combustor with variable outlet conditions. Combustor thermoacoustics will be characterized by mean of dynamic pressures and OH* chemiluminescence recording. With the data obtained, prediction of thermoacoustic instabilities with machine learning will be proposed.

    Location: University of Twente 

    Supervisor: J.B.W. Kok

    Place of secondments:

    Industrial: General Electric (Switzerland),
    Academic: Karlsruher Institut für Technologie (Germany)


    MSc Chemistry, mention Chemical engineering at the Université Pierre et Marie Curie, France. November 2017

    MSc Thesis “A model of the disjoining pressure by Dissipative Particle Dynamics (DPD) method” at the Institute Français du Petrole, Energies Nouvelles, France.


  • ESR 13: Michael McCartney (GE Munich)


    My research focuses on the online prediction of the onset of combustion instabilities in full scale aero-engines. The existence of combustion instabilities is very difficult to predict or ‘design-out’ and as such, they often still exist at certain operating conditions in production ready engines. This results in the operating envelope of these engines being heavily restricted to avoid areas of instability and with a significant safety margin. This restriction of the operating envelope leads to reductions in the efficiency or operability of the engine. With better online predictive tools, which we hope to create by leveraging machine learning to improve existing tools, the safety margins around the unstable regions could be reduced, improving the performance of the engine.


    I graduated from Imperial College London with an MEng in Mechanical Engineering, where I focussed on thermo-fliuds. In my Masters project I created a design optimisation tool for rocket injectors that used neural networks to create a meta-model of a design’s performance. During this project I developed skills and an understanding of machine learning that have formed the basis of my work today.

  • ESR 14: Thomas Lafarge (Safran Tech)

    ESR 14: Thomas LAFARGE 


    Master in engineering, Ecole Centrale de Lyon (France): Generalist engineer

    Master in Science and Technology, Keio University (Japan): School of Science for Open and Environmental Systems.

    Host entity: Safran Tech (Magny-les-Hameaux, France)

    Academic host: CERFACS (Toulouse, France)

    Research Topic: Investigation of the use of Lattice-Boltzmann method applied to multiphasic flows:

    The numerical study of injection is a critical point if we consider the behaviour of a flame as both the flame and the injection responses to thermo-acoustic waves are coupled. Consequently, the study of the physic of injection is sensitive if we want to determine the physic of a combustion chamber.

    A lot of current numerical simulation of multiphasic flows relies on front tracking methods, that are computationally expensive and not always efficient to catch breaking phenomena and particularly primary atomization. On another hand, Lattice-Boltzmann (LB) methods have recently shown a great degree of maturity and could be able to simulate multiphasic problems with high-density ratio in a close future. The first part of this work consists in investigating the potential of those methods on our applications. Afterwards, we will consider the use of machine learning in determining automatically the tunable parameters that are inherent to LB methods.

  • ESR 15: Pasquale Walter Agostinelli (Safran HE)


    Pasquale Walter Agostinelli

    Born in Benevento, Italy on the 1st of September 1994


    Host institution: Safran Helicopter Engines, Bordes, France

    Academic institution: CERFACS, Toulouse, France

    University: Institut national polytechnique de Toulouse, Toulouse, France

    Ciao! I’m Walter Agostinelli and I am an Early-Stage Researcher for Safran Helicopter Engines in the MAGISTER Marie Sklodowska Curie ITN European project. I have a BSc in Aerospace Engineering at Università di Napoli Federico II with a bachelor thesis at the Italian Aerospace Research Center, where I worked on the aerothermodynamic analyses of the GHIBLI Plasma Wind Tunnel. In July 2018, I obtained the Space Engineering MSc from Politecnico di Milano, the Double MSc Degree in Aerospace Engineering from Politecnico di Torino and in February 2019 I have received also the Diploma from Alta Scuola Politecnica, a management and business school funded by Politecnico di Milano and Politecnico di Torino. During my studies, after an internship at the University of Texas at Arlington thanks to a scholarship of the Italian Space Agency, I joined the Erasmus Program at TU Delft, where I was also Teaching Assistant for the course of Dynamics. I worked on my Master Thesis at the Von Karman Institute for Fluid Dynamics on the experimental and numerical characterization of the H3 hypersonic wind tunnel. I’m found of research and innovation and I like to work in a dynamic, stimulating and international environment.