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() less than 2 years ® 2to5years @ 5 to 10 years A more than 10 years ) obsolete before plateau As of July 2020

gartner.com/SmarterWithGartner

Source: Gartner
@ 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S. G a rt n e r®




The hype

Expectations

> Time

Z CERFACS | 4



The hype

Expectations

> Time

Z CERFACS | 4



Intro

The hype

Expectations

AlIAIloNpo.ud JOo neale|d

Juswiualyblju3g Jo ado|S

» Time

Juswiuolsn||isi Jo ybnodyp

suole1oadxs
Pajefjul JO Meosd

1abbi1] uoneAouu|

Z CERFACS | 4



The hype

Z CERFACS

Hype Cycle for Emerging
Technologies, 2020

Secure Access Service Edge (SASE)
Social Distancing Technologies

Explainable Al

Embedded Al
Data Fabric

Composable Enterprise
Al Augmented Development

g Responsible Al Carbon-Based Transistors
(@) Multiexperience __
- Digital Twin of the Person
s Packaged Business Capabilities ¥ Citizen Twin
(&) Generative Al __ Bring Your Own Identity
D Composite Al _

Adaptive ML -
g‘ — Social Data

- Private 5G

1] Generative Adversarial ~. Differential Privacy )

Networks Biodegradable Ontologies and Graphs

2-Way BMI (Brain — Sensors

Machine Interface)
Health Passport

Self-Supervised Learning

Low-Cost Single-Board ———

Computers at the Edge — DNA Computing and Storage

— Al-Assisted Design
Authenticated

Provenance
Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity

Time

Plateau will be reached:

() less than 2 years ® 2to5years @ 5 to 10 years A more than 10 years ) obsolete before plateau As of July 2020

gartner.com/SmarterWithGartner

Source: Gartner
@ 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S. G a rt n e r®




The hype

Hype Cycle for Emerging
Technologies, 2020

Secure Access Service Edge (SASE)
Social Distancing Technologies

Explainable Al

Embedded Al
Ds abric

CompedSable Enterprise
AlLAa@mented Development

e
[ - Responsible Al
= Multj i —
rgital Twin of the Person
Packaged Business Capabilities .
n!HEFiiilli °| >
o

Carbon-Based Transistors

Citizen Twin

Bring Your Own Identity

— ]
-
' Adaptive ML -
- — Social Data
- — Private 5G
L] Generative Adversarial . Differential Privacy Ontoloai d Graph
Networks A ntologies and Graphs
-Way BMI (Brain — Sensors

Mackhine Interface)
Health Passport

Self-Supervised Learning

Low-Cost Single-Boand —

Computers at the Edge — DNA Computing and Storage

— Al-Assisted Design
Authenticated

Provenance
Peak of
Innovation Inflated Trough of Slope of
Trigger Expectations Disillusionment Enlightenment
®
Time

Plateau will be reached:
() less than 2 years ® 2to5years @ 5 to 10 years A more than 10 years (X obsolete before plateau

gartner.com/SmarterWithGartner

Z CERFACS | 5 soucecome

@ 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S.

Plateau of
Productivity

As of July 2020

Gartner

Intro



The hype

Z CERFACS |

5

Hype Cycle for Emerging
Technologies, 2020

Deep learning (2018)

ccess Service Edge (SASE)
cial Distancing Technologies

Explainable Al

Embedded Al
Data-fFabric

CompedSable Enterprise
AlLAa@mented Development

(7]

- Responsible Al __
o Multi i e
igital Iwin of the Person

Carbon-Based Transistors

Packaged Business Capabilities Citizen Twin
- - F Bring Your Own Identity
m
‘ Adaptive ML -
> — Social Data
x - Private 5G
L

Generative Adversarial
Networks

-Way BMI (Brain —
Mackhine Interface)

Differential Privacy

Biodegradable
Sensors

Ontologies and Graphs

Health Passport
Self-Supervised Learning

Low-Cost Single-Board —

Computers at the Edge — DNA Computing and Storage

— Al-Assisted Design
Authenticated .

Provenance
Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
®
Time

Plateau will be reached:
() less than 2 years ® 2to5years @ 5 to 10 years A more than 10 years (X obsolete before plateau As of July 2020

gartner.com/SmarterWithGartner

Source: Gartner
@ 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S. G a rt n e r@

Intro



Intro

amazon
N

OpenAl

Z CERFACS | ¢



amazon
~—"

How is Data Science (DS) relevant to the Physical sciences?

A.k.a. how do we separate the hype from what’s truly useful?

Z CERFACS | ¢



amazZon
~—"

How is Data Science (DS) relevant to the Physical sciences?
A.k.a. how do we separate the hype from what’s truly useful?

= CERFACS | 6 Machine Learning



Machines that learn ?

Z CERFACS | 7



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data science

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data science

Data mining and processing

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data mining and processing Data science

LG ELE

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data mining and processing Data science

ex: estimators, correlation,
unsupervised clustering...

Statistical analysis

LG ELE

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data mining and processing Data science

ex: estimators, correlation,
unsupervised clustering...

Statistical analysis

Machine learning

: decision trees supervised clustering
Blg data artificial neural reinforcement

networks learning
support vector rule based
machines genetic algorithms

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data mining and processing Data science

ex: estimators, correlation,
unsupervised clustering...

Statistical analysis

Machine learning

: decision trees supervised clustering
Blg data artificial neural reinforcement

networks learning
support vector rule based
machines genetic algorithms

Deep learning

Z CERFACS | 8



Machine Learning

The Data Science landscape

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

Data mining and processing Data science

ex: estimators, correlation,
unsupervised clustering...

Statistical analysis

Machine learning

: decision trees supervised clustering
Blg data artificial neural reinforcement

networks learning
support vector rule based
machines genetic algorithms
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How about machine learning?

| _ Hypothesis
At it’s heart: Bayesian Inference: Fvidence 7

(just like humans! [1]) P(H|E) « P(E|H) - P(H)

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
= CERFACS | 10 Better Than Any Machine... for Now. Penguin.
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How about machine learning?

Hypothesis

At it’s heart: Bayesian Inference: Fvidence 7

(just like humans! [1]) P(H|E) « P(E|H) - P(H)

Posterior Likelihood  Prior

e Procedure:
® Choose Prior (e.g. « linear relation »)
o Compute Likelihood
o tvaluate FPosterior
® Repeat (with new Prior)

e Priori beliefs (H) are updated according
to evidence (E), using Bayes' rule

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
2 CERFACS | 10 Better Than Any Machine... for Now. Penguin.



How about machine learning?

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior P(H|E)

H

A y=ax+b

[1] Wolpert, David H. "The lack of a prior1 distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.
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How about machine learning?

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior P(H|E)

H

p y=ax+

, P(E|H) is high N

Conclusion: my hypothesis is
supported by the data, so I'm
now more confidentin it

Conclusion: 9 Conclusion:
The data doesn’t support H Nothing works!

A

Some problems are ill-posed:
There is a fundamental ambiguity

The no-free lunch theorem [1]

2
L : —ax“+bx+c
« there are no a olgfelg distinctions Y

between learning algorithms » that cannot be resolved

[1] Wolpert, David H. "The lack of a prior1 distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.
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(from F. Chollet) Experience

Skill

Experience

I: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
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with traditional you can't code it. Example:
programming

Know the problem before
focusing on the data

o OSSN
................
: eSS
__________________

Not a cat

Get lots of data

Where’s the cat?

Don’t let ML do the hard
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How much data?

0 =30 100-1000 100,000

Statistical
tests

(x2...)

Regression, SVMs,

Neural Network

Trees, Ensemble .
territory

methods ...

Data

Simple

regression

very low
dimension
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Not enough data ... ?

Earthquake frequency:
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Case Studies of Al in CFD
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Al for « better » CFD...?
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e Many degrees of Al « intrusion » in CFD are possible

e |t IS not yet clear which Is the best way to go!
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0
0x

)
)} — — Models
0

o

More accurate
models

1. Subgrid-scale

modeling with CNNs

Ongoing PhD of Victor Xing, Cerfacs

Lapeyre, C.J., Misdariis, A., Cazard, N. & Poinsot, T (2018). A-posterior1 evaluation of a deep convolutional
neural network approach to subgrid-scale flame surface estimation. Proc. CTR Summer Program, 349-358.

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural
2 CERFACS | 21 networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264



Very large scale combustion

Open End

e Context: safety of industrial Removable Baffle Plates
complexes in combustible gas Rk
leaks

Central Obstacle

Ignition

e Reactive LES of very large domains

Closed End

Elsa Gullaud, Post-Doc 2019
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Subgrid-scale models

What | can pay for
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Subgrid-scale models

What | can pay for Fully resolved physics

~~_ S/

What’s missing?
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Filter % Input
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0 solver
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Combustion SGS

DNS
Resolved
flame
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[1] Butler, T. D. & O’Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 — 1515.
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Efficiency functions f - local to global

= R = |

LOCAL FORMULATIONS:

1989 - Gouldin (fractal)
2000 - Colin et al.
2002 - Charlette et al.
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Efficiency functions f - local to global

LOCAL FORMULATIONS:

1989 - Gouldin (fractal)
2000 - Colin et al.
2002 - Charlette et al.

DYNAMIC FORMULATIONS:
2011 - Wang et al.

CNN FORMULATION:
2019 - Lapeyre et al.
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Building the dataset

Gaussian filtering equivalent

to flame thickening A

| —2 (2
FA(n) _ {e 2 if n € [I,N]
0 otherwise

Convolutional neural network

Z CERFACS | 26



N eura I N etWO rk W) Conv 33, BN, ReLU

U MaxPooling 23
ﬁ UpSampling 23
2 Concatenate

. Conv 13, ReLu

Input

64 32
Ve
%I.l. Ve
128 64 I

==k
128 U

Segmented image By By
~
Architecture is adapted from a medical Jenn

image segmentation network [9]

3 CERFACS 7 Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
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Neural network

32 32
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Neural network
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Neural network

3232
C ‘I‘I
U a64 B 64 128

i=0=1——1

21 JRPE
=1 3
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Neural network

3232
C ‘I‘I

U B« B o 128

Bl Bl @%

128
= > I

e Network Is trained on increasing size inputs: 83, then
163, and finally 323.
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A priori strategy

Training setup

5 2

Training é é

CNN

Target setup

g0

AVBP DNS
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A priori strategy
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A priori strategy

Training setup

5 2

Training

)

Detailed
comparison

Filter
Filter
Target setup /
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AVBP DNS
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DNS for training

Fresh + Turbulence

Outlet

o 25.6 mm 51.2 mm

Similar to: Bell, J. B., Day, M. S., Grcar, J. F., Lyjewski, M. J., Driscoll, J. F., & Filatyev, S. A. (2007).
Numerical simulation of a laboratory-scale turbulent slot flame. Proceedings of the combustion

Z CERFACS | 30 justitute, 31(1), 1299-1307.



A priori test

e Test case: unsteady 5
flow dynamics

. e
[e a8
- 3

u, = 10 m/s

'ﬁ-
e 2
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A priori results

DNS L0 ® DNS
1.4 - CNN
Fractal
1.2 - Charlette
LES

‘v
—
£
N
c 1.0
e
LES $ 0.8+
. T @
Input 2 0.6 -
0.
5
L 04 N
0.2 A
LES 0.041__ | | | | |
model 0 10 20 N 30 40 50
X postition [mm]

Example snapshot during test
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A priori results

DNS L0 ® DNS
1.4 - CNN
Fractal
1.2 - Charlette
LES

‘v
—
£
N
c 1.0
e
LES $ 0.8+
. T @
Input 2 0.6 -
0.
5
L 04 N
0.2 A
LES 0.041__ | | | | |
model 0 10 20 N 30 40 50
X postition [mm]

Example snapshot during test

Excellent agreement compared

to litterature.
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A posteriori strategy

Training setup

5

Training

CNN

Target setup

=
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A posteriori strategy

Training setup
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Training
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Tests a posteriori in LES:

e The CNN can be integrated in AVBP code to compute
flame wrinkling but the inference time (evaluation of foww)

becomes too long on CPU: GPUs are much better
e -> Nybrid architecture Is needed

- — GPU : CNN
CPU : Navier-Stokes solver fCNN(C) (TensorFlow)

(AVBP)
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A posteriori results

e CNN performs better than than state-of-the-art
models on this setup

@ DNS
Charlette [7]
-« = Dynamic [2]
= == CNN [10]
q
|
L)
ol

Distance from axis [mm]
o = N W D Ul @)) ~d 00

q
3
|
P
:
[ »
o
L
1.

o

0.0 0.5 1.0 0.0 1.0 0.5 0 0.5
Progress variable [-]
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JZ Grand Challenge

e We target large scale LES => hybrid CPU/GPU and
solver/neural network approach must scale to HPC

e 2019-2020: Jean Zay Grand Challenge

AVBP-DL: 2000 CPU + 64 GPU simulation on Jean Zay | V. Xing,A. Misdariis, G. Staffelbach, C. Lapeyre

GPU1 GPU1/

3 CERFACS 36 V. Xing (Ph.D. started 2019), supervised by C. Lapeyre, A. Misdariis, O. Vermorel & T. Poinsot



2. Data-driven discretization

2 CERFACS | 37 Ongoing PhD of Luciano Drozda, Cerfacs



Solving fine structures

What | can pay for Fully resolved physics

~o 5P

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
2 CERFACS | 38 partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.
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Solving fine structures

What | can pay for Fully resolved physics

[

Fine 8x Coarse 16x Coarse

ON4dM

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
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Solving fine structures

What | can pay for Fully resolved physics

[

Fine 8x Coarse 16x Coarse

~o 5P

%
Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
2 CERFACS | 38 partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.
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Data Driven Discretization

Cell average at Spatlal derivatives
timet
P (13)
v i U(Tr—m)
I/ U (mn) 8:13"“ Z
|

1

Flux (equation specific)

J(zn) = J(mn,u(xn) (,f w(zn), aa—;u(xn),...)

!

-— —

\
\\ Time derivative
N Cell average at timet+At | |
(method of lines) - 8ué(9xn) - _AL [J (x +1) —J (ac 1)}
t T nTa n—32

e One of the less intrusive approaches

e Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
2 CERFACS 39  partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.
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Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
2 CERFACS 39  partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.
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e Challenge #1: differentiability

® NN require the chain to be differentiable i.e. you must
rewrite your CED solver in a deep learning framework

® Several solvers with this tech under development (e.g.
PhiFlow [1] at TUM)

e Challenge #2: time stabillity

® Supervised learning (error wrt next iteration) leaves room for
small errors that accumulate => divergence

@ BUT training In a supervised manner long term doesn't
seem to work: turbulent paths differ, and punishing the
network for difference to DNS doesn’t work anymore

2- CERFACS 41 [ 1] https://ge.in.tum.de/research/phitflow/
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